Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unravelling the Stability and Capsid Dynamics of the Three Virions of Brome Mosaic Virus Assembled Autonomously In Vivo.

Identifieur interne : 000007 ( Main/Exploration ); précédent : 000006; suivant : 000008

Unravelling the Stability and Capsid Dynamics of the Three Virions of Brome Mosaic Virus Assembled Autonomously In Vivo.

Auteurs : Antara Chakravarty [États-Unis] ; Vijay S. Reddy [États-Unis] ; A L N. Rao [États-Unis]

Source :

RBID : pubmed:31996436

Descripteurs français

English descriptors

Abstract

Viral capsids are dynamic assemblies that undergo controlled conformational transitions to perform various biological functions. The replication-derived four-molecule RNA progeny of Brome mosaic virus (BMV) is packaged by a single capsid protein (CP) into three types of morphologically indistinguishable icosahedral virions with T=3 quasisymmetry. Type 1 (B1V) and type 2 (B2V) virions package genomic RNA1 and RNA2, respectively, while type 3 (B3+4V) virions copackage genomic RNA3 (B3) and its subgenomic RNA4 (sgB4). In this study, the application of a robust Agrobacterium-mediated transient expression system allowed us to assemble each virion type separately in planta Experimental approaches analyzing the morphology, size, and electrophoretic mobility failed to distinguish between the virion types. Thermal denaturation analysis and protease-based peptide mass mapping experiments were used to analyze stability and the conformational dynamics of the individual virions, respectively. The crystallographic structure of the BMV capsid shows four trypsin cleavage sites (K65, R103, K111, and K165 on the CP subunits) exposed on the exterior of the capsid. Irrespective of the digestion time, while retaining their capsid structural integrity, B1V and B2V released a single peptide encompassing amino acids 2 to 8 of the N-proximal arginine-rich RNA binding motif. In contrast, B3+4V capsids were unstable with trypsin, releasing several peptides in addition to the peptides encompassing four predicted sites exposed on the capsid exterior. These results, demonstrating qualitatively different dynamics for the three types of BMV virions, suggest that the different RNA genes they contain may have different translational timing and efficiency and may even impart different structures to their capsids.IMPORTANCE The majority of viruses contain RNA genomes protected by a shell of capsid proteins. Although crystallographic studies show that viral capsids are static structures, accumulating evidence suggests that, in solution, virions are highly dynamic assemblies. The three genomic RNAs (RNA1, -2, and -3) and a single subgenomic RNA (RNA4) of Brome mosaic virus (BMV), an RNA virus pathogenic to plants, are distributed among three physically homogeneous virions. This study examines the thermal stability by differential scanning fluorimetry (DSF) and capsid dynamics by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analyses following trypsin digestion of the three virions assembled separately in vivo using the Agrobacterium-mediated transient expression approach. The results provide compelling evidence that virions packaging genomic RNA1 and -2 are distinct from those copackaging RNA3 and -4 in their stability and dynamics, suggesting that RNA-dependent capsid dynamics play an important biological role in the viral life cycle.

DOI: 10.1128/JVI.01794-19
PubMed: 31996436
PubMed Central: PMC7108849


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unravelling the Stability and Capsid Dynamics of the Three Virions of Brome Mosaic Virus Assembled Autonomously
<i>In Vivo</i>
.</title>
<author>
<name sortKey="Chakravarty, Antara" sort="Chakravarty, Antara" uniqKey="Chakravarty A" first="Antara" last="Chakravarty">Antara Chakravarty</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reddy, Vijay S" sort="Reddy, Vijay S" uniqKey="Reddy V" first="Vijay S" last="Reddy">Vijay S. Reddy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rao, A L N" sort="Rao, A L N" uniqKey="Rao A" first="A L N" last="Rao">A L N. Rao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA arao@ucr.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31996436</idno>
<idno type="pmid">31996436</idno>
<idno type="doi">10.1128/JVI.01794-19</idno>
<idno type="pmc">PMC7108849</idno>
<idno type="wicri:Area/Main/Corpus">000061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000061</idno>
<idno type="wicri:Area/Main/Curation">000061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000061</idno>
<idno type="wicri:Area/Main/Exploration">000061</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Unravelling the Stability and Capsid Dynamics of the Three Virions of Brome Mosaic Virus Assembled Autonomously
<i>In Vivo</i>
.</title>
<author>
<name sortKey="Chakravarty, Antara" sort="Chakravarty, Antara" uniqKey="Chakravarty A" first="Antara" last="Chakravarty">Antara Chakravarty</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reddy, Vijay S" sort="Reddy, Vijay S" uniqKey="Reddy V" first="Vijay S" last="Reddy">Vijay S. Reddy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rao, A L N" sort="Rao, A L N" uniqKey="Rao A" first="A L N" last="Rao">A L N. Rao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA arao@ucr.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (genetics)</term>
<term>Bromovirus (genetics)</term>
<term>Bromovirus (metabolism)</term>
<term>Capsid (metabolism)</term>
<term>Capsid Proteins (genetics)</term>
<term>Capsid Proteins (metabolism)</term>
<term>Genome, Viral (MeSH)</term>
<term>Peptide Mapping (MeSH)</term>
<term>RNA, Bacterial (MeSH)</term>
<term>RNA, Viral (genetics)</term>
<term>Virion (genetics)</term>
<term>Virion (metabolism)</term>
<term>Virus Assembly (genetics)</term>
<term>Virus Assembly (physiology)</term>
<term>Virus Replication (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN bactérien (MeSH)</term>
<term>ARN viral (génétique)</term>
<term>Agrobacterium (génétique)</term>
<term>Assemblage viral (génétique)</term>
<term>Assemblage viral (physiologie)</term>
<term>Bromovirus (génétique)</term>
<term>Bromovirus (métabolisme)</term>
<term>Capside (métabolisme)</term>
<term>Cartographie peptidique (MeSH)</term>
<term>Génome viral (MeSH)</term>
<term>Protéines de capside (génétique)</term>
<term>Protéines de capside (métabolisme)</term>
<term>Réplication virale (MeSH)</term>
<term>Virion (génétique)</term>
<term>Virion (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Capsid Proteins</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>Bromovirus</term>
<term>Virion</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN viral</term>
<term>Agrobacterium</term>
<term>Assemblage viral</term>
<term>Bromovirus</term>
<term>Protéines de capside</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bromovirus</term>
<term>Capsid</term>
<term>Capsid Proteins</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bromovirus</term>
<term>Capside</term>
<term>Protéines de capside</term>
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Assemblage viral</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Viral</term>
<term>Peptide Mapping</term>
<term>RNA, Bacterial</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN bactérien</term>
<term>Cartographie peptidique</term>
<term>Génome viral</term>
<term>Réplication virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viral capsids are dynamic assemblies that undergo controlled conformational transitions to perform various biological functions. The replication-derived four-molecule RNA progeny of
<i>Brome mosaic virus</i>
(BMV) is packaged by a single capsid protein (CP) into three types of morphologically indistinguishable icosahedral virions with T=3 quasisymmetry. Type 1 (B1
<sup>V</sup>
) and type 2 (B2
<sup>V</sup>
) virions package genomic RNA1 and RNA2, respectively, while type 3 (B3+4
<sup>V</sup>
) virions copackage genomic RNA3 (B3) and its subgenomic RNA4 (sgB4). In this study, the application of a robust
<i>Agrobacterium</i>
-mediated transient expression system allowed us to assemble each virion type separately
<i>in planta</i>
Experimental approaches analyzing the morphology, size, and electrophoretic mobility failed to distinguish between the virion types. Thermal denaturation analysis and protease-based peptide mass mapping experiments were used to analyze stability and the conformational dynamics of the individual virions, respectively. The crystallographic structure of the BMV capsid shows four trypsin cleavage sites (K
<sup>65</sup>
, R
<sup>103</sup>
, K
<sup>111</sup>
, and K
<sup>165</sup>
on the CP subunits) exposed on the exterior of the capsid. Irrespective of the digestion time, while retaining their capsid structural integrity, B1
<sup>V</sup>
and B2
<sup>V</sup>
released a single peptide encompassing amino acids 2 to 8 of the N-proximal arginine-rich RNA binding motif. In contrast, B3+4
<sup>V</sup>
capsids were unstable with trypsin, releasing several peptides in addition to the peptides encompassing four predicted sites exposed on the capsid exterior. These results, demonstrating qualitatively different dynamics for the three types of BMV virions, suggest that the different RNA genes they contain may have different translational timing and efficiency and may even impart different structures to their capsids.
<b>IMPORTANCE</b>
The majority of viruses contain RNA genomes protected by a shell of capsid proteins. Although crystallographic studies show that viral capsids are static structures, accumulating evidence suggests that, in solution, virions are highly dynamic assemblies. The three genomic RNAs (RNA1, -2, and -3) and a single subgenomic RNA (RNA4) of Brome mosaic virus (BMV), an RNA virus pathogenic to plants, are distributed among three physically homogeneous virions. This study examines the thermal stability by differential scanning fluorimetry (DSF) and capsid dynamics by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analyses following trypsin digestion of the three virions assembled separately
<i>in vivo</i>
using the
<i>Agrobacterium</i>
-mediated transient expression approach. The results provide compelling evidence that virions packaging genomic RNA1 and -2 are distinct from those copackaging RNA3 and -4 in their stability and dynamics, suggesting that RNA-dependent capsid dynamics play an important biological role in the viral life cycle.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31996436</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>94</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>Unravelling the Stability and Capsid Dynamics of the Three Virions of Brome Mosaic Virus Assembled Autonomously
<i>In Vivo</i>
.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01794-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01794-19</ELocationID>
<Abstract>
<AbstractText>Viral capsids are dynamic assemblies that undergo controlled conformational transitions to perform various biological functions. The replication-derived four-molecule RNA progeny of
<i>Brome mosaic virus</i>
(BMV) is packaged by a single capsid protein (CP) into three types of morphologically indistinguishable icosahedral virions with T=3 quasisymmetry. Type 1 (B1
<sup>V</sup>
) and type 2 (B2
<sup>V</sup>
) virions package genomic RNA1 and RNA2, respectively, while type 3 (B3+4
<sup>V</sup>
) virions copackage genomic RNA3 (B3) and its subgenomic RNA4 (sgB4). In this study, the application of a robust
<i>Agrobacterium</i>
-mediated transient expression system allowed us to assemble each virion type separately
<i>in planta</i>
Experimental approaches analyzing the morphology, size, and electrophoretic mobility failed to distinguish between the virion types. Thermal denaturation analysis and protease-based peptide mass mapping experiments were used to analyze stability and the conformational dynamics of the individual virions, respectively. The crystallographic structure of the BMV capsid shows four trypsin cleavage sites (K
<sup>65</sup>
, R
<sup>103</sup>
, K
<sup>111</sup>
, and K
<sup>165</sup>
on the CP subunits) exposed on the exterior of the capsid. Irrespective of the digestion time, while retaining their capsid structural integrity, B1
<sup>V</sup>
and B2
<sup>V</sup>
released a single peptide encompassing amino acids 2 to 8 of the N-proximal arginine-rich RNA binding motif. In contrast, B3+4
<sup>V</sup>
capsids were unstable with trypsin, releasing several peptides in addition to the peptides encompassing four predicted sites exposed on the capsid exterior. These results, demonstrating qualitatively different dynamics for the three types of BMV virions, suggest that the different RNA genes they contain may have different translational timing and efficiency and may even impart different structures to their capsids.
<b>IMPORTANCE</b>
The majority of viruses contain RNA genomes protected by a shell of capsid proteins. Although crystallographic studies show that viral capsids are static structures, accumulating evidence suggests that, in solution, virions are highly dynamic assemblies. The three genomic RNAs (RNA1, -2, and -3) and a single subgenomic RNA (RNA4) of Brome mosaic virus (BMV), an RNA virus pathogenic to plants, are distributed among three physically homogeneous virions. This study examines the thermal stability by differential scanning fluorimetry (DSF) and capsid dynamics by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analyses following trypsin digestion of the three virions assembled separately
<i>in vivo</i>
using the
<i>Agrobacterium</i>
-mediated transient expression approach. The results provide compelling evidence that virions packaging genomic RNA1 and -2 are distinct from those copackaging RNA3 and -4 in their stability and dynamics, suggesting that RNA-dependent capsid dynamics play an important biological role in the viral life cycle.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chakravarty</LastName>
<ForeName>Antara</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reddy</LastName>
<ForeName>Vijay S</ForeName>
<Initials>VS</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rao</LastName>
<ForeName>A L N</ForeName>
<Initials>ALN</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA arao@ucr.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D036022">Capsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C042027">RNA I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017795" MajorTopicYN="N">Bromovirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002213" MajorTopicYN="N">Capsid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036022" MajorTopicYN="N">Capsid Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010449" MajorTopicYN="N">Peptide Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014771" MajorTopicYN="N">Virion</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="N">Virus Assembly</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">MALDI-TOF</Keyword>
<Keyword MajorTopicYN="Y">RNA virus</Keyword>
<Keyword MajorTopicYN="Y">capsid dynamics</Keyword>
<Keyword MajorTopicYN="Y">genome packaging</Keyword>
<Keyword MajorTopicYN="Y">stability</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31996436</ArticleId>
<ArticleId IdType="pii">JVI.01794-19</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01794-19</ArticleId>
<ArticleId IdType="pmc">PMC7108849</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 Jun;88(11):6483-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24672042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Jul 20;338(1):96-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15936794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Mar 6;426(5):1061-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Aug 1;211(1):42-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7645235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2013 Mar;531(1-2):65-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 9;273(2):673-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9422714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:61-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16480335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2014 Sep;464-465:67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1974;19:151-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4613160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2012 Oct 12;423(1):79-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1999 Feb;6(2):114-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10048920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2008;153(2):231-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18066637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Jun;75(11):5385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Oct;80(20):10096-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2013 Nov;446(1-2):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24074574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Aug 1;364(2):407-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2014 Dec;9:61-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25308094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(16):8982-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2020 Jan;110(1):228-236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31411546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Rep. 2017;3(1):17-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28781998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Dec 15;226(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8955048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Aug 3;206:46-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25687214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1973 Sep;55(1):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4728830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bio Protoc. 2014 Aug 5;4(15):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27148558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18981051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2000 Mar 1;1(2):91-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 2003;64:197-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13677048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 Jan 3-9;313(5997):68-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3838107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Apr;80(7):3582-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Nov 25;277(2):450-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1976 Nov;75(1):18-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">982846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2015 Jun;190(3):279-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25956334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Mar 10;207(2):486-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7886952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Mar;85(6):2953-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Mar 15;317(1):95-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1992 Feb;2(1):71-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1378769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jun;86(11):6210-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22438552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Chakravarty, Antara" sort="Chakravarty, Antara" uniqKey="Chakravarty A" first="Antara" last="Chakravarty">Antara Chakravarty</name>
</region>
<name sortKey="Rao, A L N" sort="Rao, A L N" uniqKey="Rao A" first="A L N" last="Rao">A L N. Rao</name>
<name sortKey="Reddy, Vijay S" sort="Reddy, Vijay S" uniqKey="Reddy V" first="Vijay S" last="Reddy">Vijay S. Reddy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000007 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000007 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31996436
   |texte=   Unravelling the Stability and Capsid Dynamics of the Three Virions of Brome Mosaic Virus Assembled Autonomously In Vivo.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31996436" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024